HILFE

INFO

ReOss® Technologie
(patentgeschützt)

Bei der Augmentation von Knochendefekten ist die endgültige Knochenstruktur ein wichtiger Erfolgsfaktor um höchsten ästhetischen Ansprüchen zu genügen. Neben einem Augmentat mit hoher Regenerationskompetenz und einer gewebefreundlichen Barrierefunktion (Membran) ist für die Regeneration die Lagestabilität des Augmentates von höchster Priorität. Die dazu von ReOss® mittels digitalen Workflows hergestellten hochwertigen Gitterstrukturen aus Reintitan zur Formgebung des Knochenaugmentates können passgenau über den Knochendefekt eingebracht werden.

Knochenregeneration nach Maß

Die individuell geformten Yxoss CBR® Meshs ermöglichen ein bei augmentativen Verfahren bisher nicht gekannte Stabilität und Passgenauigkeit des zuvor geplanten Augmentationsvolumens. Sie erlauben dadurch eine ungestörte Knochenheilung frei von Druckbelastung und anderen physikalischen Einflüssen. Mit dem patentierten Verfahren zur Herstellung individueller Patientenlösungen bietet ReOss® hochwertige Individualprodukte zur "Knochenregeneration nach Maß".

Alle Yxoss® Präzisionskonstruktionen werden einer lückenlosen Qualitätsprüfung unterzogen. Somit entsprechen die mittels CAD/CAM gefertigten Produkte in allen Belangen den von ReOss® garantierten höchsten Standards.

Die ReOss®-Technologie vereint Funktion und Design zum Erfolg

  • Gesichertes Augmentationsvolumen und 3D-Volumenstabilität
  • Vorhersagbare und reproduzierbare Ergebnisse
  • Anatomische Formgebung und Gewebefreundlichkeit
  • Passgenauigkeit
  • Einfache Anwendung und deutlich verkürzte OP-Zeit
  • Regeneration auch von schwierigen Knochendefekten möglich
  • Schnelle und variable Fixation sowie leichte Entfernung (Easy Removal Design)
  • Ermöglicht die Rekonstruktion von ursprünglichen anatomischen Formen (z.B. Juga alveolaria)

Individuallösungen von ReOss®

Dr. Marcus Seiler DDS MSc, Filderstadt (Deutschland) entwickelte mit dem Verfahren der Customized Bone Regeneration Technik (CBR®) das erste CAD/CAM gesteuerte Verfahren zur Herstellung von individuell geformten Schutzgittern zur ungestörten Knochenheilung. Das Verfahren ist weltweit patentiert und kann in einfachen Schritten jedem chirurgisch tätigen Zahnarzt eine patientenspezifische Lösung ermöglichen.

Führende Zahnärzte verlassen sich auf die Individuallösungen von ReOss®:

  • Mit Yxoss CBR® augmentierter Knochen führt zu hohen Implantat-Überlebensraten, vergleichbar mit Implantaten, die in unversehrten Knochen gesetzt wurden.
  • Yxoss CBR® ist einfach zu applizieren und kann in den verschiedensten Indikationen verwendet werden.
  • Die Anwendung von Titanium Meshs ist in zahlreichen Operationen mit erfolgreicher Anwendung und Testung validiert und in zahlreichen wissenschaftlichen Publikationen dokumentiert.

 

Augmentationen mit Titanium Meshs haben über die Jahre mein Vertrauen gewonnen.

Prof. Philipp Boyne, Loma Linda, USA

Yxoss Bestellung

Yxoss CBR® - Einfache Bestellung

Sie haben in diesem Portal die Möglichkeit patientenspezifische CBR® Meshs zur passgenauen Knochenaugmentation anfertigen zu lassen. Zuvor können Sie eine Kostenvoranfrage stellen. Dafür benötigen wir einige Informationen von Ihnen, die wir im Folgenden abfragen.


Bestellung in 3 Schritten


Melden Sie sich an

RegistrationMyReOss

Verweise

Referenzen

  • Yxoss Center Mainz: Prof. Dr. Dr. Winfried Wagner
  • Yxoss Center Bremen: Dr. Dr. Helmut Hildebrandt
  • Yxoss Center Baden-Baden: PD Dr. Dr. Ronald Bucher
  • Yxoss Center Filderstadt und Kirchheim u. T.: Dr. Seiler und Kollegen

Literatur

  • M. Seiler et al. Reconstruction of complex bone defects using CAD / CAM technolgy for individual patient solutions, publication in prep.
  • Philip J. Boyne, M. Peetz, Osseous Reconstruction of the Maxilla and the Mandible using Titanium Mesh, Quintessence Publishing Company Co, Inc. 1997
  • Iwai, S., et al. (2006).
    "A modified repositioning system for segmental resection of the mandible."
    Int J Oral Maxillofac Surg 35(3): 270-273.
  • Polini, F., et al. (2009).
    "Bifunctional sculpturing of the bone graft for 3-dimensional augmentation of the atrophic posterior mandible."
    J Oral Maxillofac Surg 67(1): 174-177.
  • Rana, M., et al. (2012).
    "Development and demonstration of a novel computer planning solution for predefined correction of enophthalmos in anophthalmic patients using prebended 3D titanium-meshes-a technical note."
    J Oral Maxillofac Surg 70(11): e631-638.
  • Hirota, M. et al. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. Int J Oral Maxillofac Surg 41, 1304-1309, doi:10.1016/j.ijom.2011.12.035 (2012).
  • Lindfors, L. T., Tervonen, E. A., Sandor, G. K. & Ylikontiola, L. P. Guided bone regeneration using a titanium-reinforced ePTFE membrane and particulate autogenous bone: the effect of smoking and membrane exposure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109, 825-830, doi:10.1016/j.tripleo.2009.12.035 (2010).
  • Jensen, O. T., Lehman, H., Ringeman, J. L. & Casap, N. Fabrication of printed titanium shells for containment of BMP-2 composite graft materials for alveolar bone reconstruction. The International journal of oral & maxillofacial implants 29, e103-105, doi:10.11607/jomi.te48 (2014).
  • Longoni, S., Sartori, M., Apruzzese, D. & Baldoni, M. Preliminary clinical and histologic evaluation of a bilateral 3-dimensional reconstruction in an atrophic mandible: a case report. The International journal of oral & maxillofacial implants 22, 478-483 (2007).
  • Louis, P. J. Vertical ridge augmentation using titanium mesh. Oral Maxillofac Surg Clin North Am 22, 353-368, v, doi:10.1016/j.coms.2010.04.005 (2010).
  • Louis, P. J., Gutta, R., Said-Al-Naief, N. & Bartolucci, A. A. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg 66, 235-245, doi:10.1016/j.joms.2007.08.022 (2008).
  • Canullo, L., Trisi, P. & Simion, M. Vertical ridge augmentation around implants using e-PTFE titanium-reinforced membrane and deproteinized bovine bone mineral (bio-oss): A case report. Int J Periodontics Restorative Dent 26, 355-361 (2006).
  • Aytac, S. et al. Titanium mesh fracture in mandibular reconstruction. The Journal of craniofacial surgery 16, 1120-1122 (2005).
  • Dziegielewski, P. T. et al. Three-dimensional biomodeling in complex mandibular reconstruction and surgical simulation: prospective trial. J Otolaryngol Head Neck Surg 40 Suppl 1, S70-81 (2011).
  • Gong, Z. et al. [Reconstruction of mandibular bone defects using three-dimensional skull model and individualized titanium prosthetics from computer assisted design]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26, 83-86 (2012).
  • Hanasono, M. M. & Skoracki, R. J. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope 123, 597-604, doi:10.1002/lary.23717 (2013).
  • Mangano, F. et al. Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible. Lasers Med Sci 28, 1241-1247, doi:10.1007/s10103-012-1205-1 (2013).
  • Singare, S. et al. Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 26, 671-676, doi:10.1016/j.medengphy.2004.06.001 (2004).
  • Wang, G. et al. CAD/CAM and rapid prototyped titanium for reconstruction of ramus defect and condylar fracture caused by mandibular reduction. Oral Surg Oral Med Oral Pathol Oral Radiol 113, 356-361, doi:10.1016/j.tripleo.2011.03.034 (2012).
  • Esposito, M. et al. The efficacy of horizontal and vertical bone augmentation procedures for dental implants - a Cochrane systematic review. European journal of oral implantology 2, 167-184 (2009).
  • Ortorp, A. & Jemt, T. Early laser-welded titanium frameworks supported by implants in the edentulous mandible: a 15-year comparative follow-up study. Clin Implant Dent Relat Res 11, 311-322, doi:10.1111/j.1708-8208.2008.00119.x (2009).
  • Pelo, S., Boniello, R., Gasparini, G., Longobardi, G. & Amoroso, P. F. Horizontal and vertical ridge augmentation for implant placement in the aesthetic zone. Int J Oral Maxillofac Surg 36, 944-948, doi:10.1016/j.ijom.2007.05.006 (2007).
  • Bullock, P., Dunaway, D., McGurk, L. & Richards, R. Integration of image guidance and rapid prototyping technology in craniofacial surgery. Int J Oral Maxillofac Surg 42, 970-973, doi:10.1016/j.ijom.2013.04.019 (2013).
  • Ciocca, L. et al. A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Med Biol Eng Comput 50, 743-749, doi:10.1007/s11517-012-0898-4 (2012).
  • Cohen, A., Laviv, A., Berman, P., Nashef, R. & Abu-Tair, J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108, 661-666, doi:10.1016/j.tripleo.2009.05.023 (2009).
  • Lehman, H. & Casap, N. Rapid-prototype titanium bone forms for vertical alveolar augmentation using bone morphogenetic protein-2: design and treatment planning objectives. The International journal of oral & maxillofacial implants 29, e259-264, doi:10.11607/jomi.te62 (2014).
  • Mertens, C., Lowenheim, H. & Hoffmann, J. Image data based reconstruction of the midface using a patient-specific implant in combination with a vascularized osteomyocutaneous scapular flap. J Craniomaxillofac Surg 41, 219-225, doi:10.1016/j.jcms.2012.09.003 (2013).
  • Polini, F., Robiony, M., Sembronio, S., Costa, F. & Politi, M. Bifunctional sculpturing of the bone graft for 3-dimensional augmentation of the atrophic posterior mandible. J Oral Maxillofac Surg 67, 174-177, doi:10.1016/j.joms.2007.06.646 (2009).
  • Singare, S. et al. Individually Prefabricated Prosthesis for Maxilla Reconstuction. J Prosthodont 17, 135-140, doi:10.1111/j.1532-849X.2007.00266.x (2008).
  • Williams, J. V. & Revington, P. J. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 39, 182-184, doi:10.1016/j.ijom.2009.12.002 (2010).
  • Xu, X. et al. [Application of CAD/CAM techniques in mandible large-scale defect and reconstruction with vascularized fibular bone graft]. Zhejiang Da Xue Xue Bao Yi Xue Ban 36, 498-502 (2007).
  • Xu, X., Ping, F. Y., Chen, J., Yan, J. L. & Yan, F. G. [Application of computer aided design/computer aided manufactured techniques in mandible defect reconstruction]. Zhonghua Kou Qiang Yi Xue Za Zhi 42, 492-495 (2007).
  • Zhang, S. et al. Application of rapid prototyping for temporomandibular joint reconstruction. J Oral Maxillofac Surg 69, 432-438, doi:10.1016/j.joms.2010.05.081 (2011).
  • Zhou, L. B. et al. Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study. J Oral Maxillofac Surg 68, 2115-2121, doi:10.1016/j.joms.2009.09.033 (2010).
  • Hollister, S. J. et al. Engineering craniofacial scaffolds. Orthod Craniofac Res 8, 162-173, doi:10.1111/j.1601-6343.2005.00329.x (2005).
  • Merli, M., Lombardini, F. & Esposito, M. Vertical ridge augmentation with autogenous bone grafts 3 years after loading: resorbable barriers versus titanium-reinforced barriers. A randomized controlled clinical trial. The International journal of oral & maxillofacial implants 25, 801-807 (2010).
  • Merli, M., Migani, M., Bernardelli, F. & Esposito, M. Vertical bone augmentation with dental implant placement: efficacy and complications associated with 2 different techniques. A retrospective cohort study. The International journal of oral & maxillofacial implants 21, 600-606 (2006).
  • Merli, M., Migani, M. & Esposito, M. Vertical ridge augmentation with autogenous bone grafts: resorbable barriers supported by ostheosynthesis plates versus titanium-reinforced barriers. A preliminary report of a blinded, randomized controlled clinical trial. The International journal of oral & maxillofacial implants 22, 373-382 (2007).
  • Scattarella, A. et al. Treatment of oroantral fistula with autologous bone graft and application of a non-reabsorbable membrane. Int J Med Sci 7, 267-271 (2010).
  • Stringer, D. & Brown, B. Correction of mandibular asymmetry using angled titanium mesh. J Oral Maxillofac Surg 67, 1619-1627, doi:10.1016/j.joms.2008.12.068 (2009).
  • Roccuzzo, M., Ramieri, G., Bunino, M. & Berrone, S. Autogenous bone graft alone or associated with titanium mesh for vertical alveolar ridge augmentation: a controlled clinical trial. Clin Oral Implants Res 18, 286-294, doi:10.1111/j.1600-0501.2006.01301.x (2007).
  • Pieri, F. et al. Alveolar ridge augmentation with titanium mesh and a combination of autogenous bone and anorganic bovine bone: a 2-year prospective study. J Periodontol 79, 2093-2103, doi:10.1902/jop.2008.080061 (2008).
  • Papadogeorgakis, N., Prokopidi, M. E. & Kourtis, S. The use of titanium mesh in sinus augmentation. Implant Dent 19, 109-114, doi:10.1097/ID.0b013e3181d46a0c (2010).
  • Miyamoto, I., Funaki, K., Yamauchi, K., Kodama, T. & Takahashi, T. Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity. Clin Implant Dent Relat Res 14, 304-311, doi:10.1111/j.1708-8208.2009.00257.x (2012).
  • Matsui, Y., Ohta, M., Ohno, K. & Nagumo, M. Alveolar bone graft for patients with cleft lip/palate using bone particles and titanium mesh: A quantitative study. J Oral Maxillofac Surg 64, 1540-1545, doi:10.1016/j.joms.2005.12.030 (2006).
  • Her, S., Kang, T. & Fien, M. J. Titanium mesh as an alternative to a membrane for ridge augmentation. J Oral Maxillofac Surg 70, 803-810, doi:10.1016/j.joms.2011.11.017 (2012).
  • Corinaldesi, G., Pieri, F., Sapigni, L. & Marchetti, C. Evaluation of survival and success rates of dental implants placed at the time of or after alveolar ridge augmentation with an autogenous mandibular bone graft and titanium mesh: a 3- to 8-year retrospective study. The International journal of oral & maxillofacial implants 24, 1119-1128 (2009).
  • Ciocca, L., Fantini, M., De Crescenzio, F., Corinaldesi, G. & Scotti, R. CAD-CAM prosthetically guided bone regeneration using preformed titanium mesh for the reconstruction of atrophic maxillary arches. Comput Methods Biomech Biomed Engin 16, 26-32, doi:10.1080/10255842.2011.601279 (2013).
  • Ciocca, L., Fantini, M., De Crescenzio, F., Corinaldesi, G. & Scotti, R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 49, 1347-1352, doi:10.1007/s11517-011-0813-4 (2011).
  • Yamashita, Y., Yamaguchi, Y., Tsuji, M., Shigematsu, M. & Goto, M. Mandibular reconstruction using autologous iliac bone and titanium mesh reinforced by laser welding for implant placement. The International journal of oral & maxillofacial implants 23, 1143-1146 (2008).
  • Tang, W. et al. Individual design and rapid prototyping in reconstruction of orbital wall defects. J Oral Maxillofac Surg 68, 562-570, doi:10.1016/j.joms.2009.04.042 (2010).
  • Scolozzi, P. et al. Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: a pilot study. The Journal of craniofacial surgery 20, 1108-1113, doi:10.1097/SCS.0b013e3181abb44b (2009).
  • Mustafa, S. F. et al. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int J Oral Maxillofac Surg 40, 1357-1362, doi:10.1016/j.ijom.2011.04.020 (2011).
  • Lethaus, B., Kessler, P., Boeckman, R., Poort, L. J. & Tolba, R. Reconstruction of a maxillary defect with a fibula graft and titanium mesh using CAD/CAM techniques. Head Face Med 6, 16, doi:10.1186/1746-160x-6-16 (2010).
  • Kim, Y. K., Yun, P. Y., Kim, S. G. & Oh, D. S. In vitro scanning electron microscopic comparison of inner surface of exposed and unexposed nonresorbable membranes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107, e5-e11, doi:10.1016/j.tripleo.2009.03.003 (2009).
  • Iino, M. et al. Evaluation of 15 mandibular reconstructions with Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107, e1-8, doi:10.1016/j.tripleo.2008.12.018 (2009).
  • Hou, J. S. et al. Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. J Craniomaxillofac Surg 40, e432-437, doi:10.1016/j.jcms.2012.02.022 (2012).
  • Horn, D., Engel, M., Bodem, J. P., Hoffmann, J. & Freudlsperger, C. Reconstruction of a near-total nasal defect using a precontoured titanium mesh with a converse scalping flap. The Journal of craniofacial surgery 23, e410-412, doi:10.1097/SCS.0b013e31825cef78 (2012).
  • Hernandez-Alfaro, F., Ruiz-Magaz, V., Chatakun, P. & Guijarro-Martinez, R. Mandibular reconstruction with tissue engineering in multiple recurrent ameloblastoma. Int J Periodontics Restorative Dent 32, e82-86 (2012).
  • Guo, L. et al. Reconstruction of orbital floor fractures: comparison of individual prefabricated titanium implants and calvarial bone grafts. Ann Plast Surg 63, 624-631, doi:10.1097/SAP.0b013e3181999df3 (2009).
  • Cui, J. et al. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg 72, 1138.e1131-1114, doi:10.1016/j.joms.2014.02.023 (2014).
  • An, J. G., Zhang, Y. & Zhang, Z. Y. [Computer-assisted fabricated individual titanium mesh for reconstruction of orbital wall]. Beijing Da Xue Xue Bao 40, 88-91 (2008).
  • Urban, I. A., Jovanovic, S. A. & Lozada, J. L. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading. The International journal of oral & maxillofacial implants 24, 502-510 (2009).
  • Urban, I. A., Lozada, J. L., Jovanovic, S. A., Nagursky, H. & Nagy, K. Vertical ridge augmentation with titanium-reinforced, dense-PTFE membranes and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 19 patients. The International journal of oral & maxillofacial implants 29, 185-193, doi:10.11607/jomi.3346 (2014).
  • Rakhmatia, Y. D., Ayukawa, Y., Furuhashi, A. & Koyano, K. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defects. The International journal of oral & maxillofacial implants 29, 826-835, doi:10.11607/jomi.3219 (2014).
  • Rakhmatia, Y. D., Ayukawa, Y., Atsuta, I., Furuhashi, A. & Koyano, K. Fibroblast attachment onto novel titanium mesh membranes for guided bone regeneration. Odontology / the Society of the Nippon Dental University, doi:10.1007/s10266-014-0151-8 (2014).
  • Vrielinck, L. et al. Osseous reconstruction using an occlusive titanium membrane following marginal mandibulectomy: proof of principle. The Journal of craniofacial surgery 25, 1112-1114, doi:10.1097/SCS.0000000000000743 (2014).

Fachpersonal

Dieser Bereich ist ausschließlich medizinischen Fachpersonen vorbehalten.

Hiermit bestätige ich, dass ich eine medizinische Fachperson bin.

Ja, bin ich Abbrechen